skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Joseph, Remy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Large diffuse galaxies are hard to find, but understanding the environments where they live, their numbers, and ultimately their origins, is of intense interest and importance for galaxy formation and evolution. Using Subaru’s Hyper Suprime-Cam Strategic Survey Program, we perform a systematic search for low surface brightness galaxies and present novel and effective methods for detecting and modeling them. As a case study, we surveyed 922 Milky Way analogs in the nearby Universe (0.01 <z< 0.04) and built a large sample of satellite galaxies that are outliers in the mass–size relation. These “ultra-puffy” galaxies (UPGs), defined to be 1.5σabove the average mass–size relation, represent the tail of the satellite size distribution. We find that each MW analog hostsNUPG= 0.31 ± 0.05 UPGs on average, which is consistent with but slightly lower than the observed abundance at this halo mass in the Local Volume. We also construct a sample of ultra-diffuse galaxies (UDGs) in MW analogs and find an abundance ofNUDG= 0.44 ± 0.05 per host. With literature results, we confirm that the UDG abundance scales with the host halo mass following a sublinear power law. We argue that our definition of UPGs, which is based on the mass–size relation, is more physically motivated than the common definition of UDGs, which depends on the surface brightness and size cuts and thus yields different surface mass density cuts for quenched and star-forming galaxies. 
    more » « less